## Enantioselective Synthesis of C11–C17 Segment of Mycinolide IV Using Samarium(II) Iodide-mediated Aldol Reaction

Yasuyuki Ogawa,<sup>†,††</sup> Kiichi Kuroda,<sup>†,††</sup> and Teruaki Mukaiyama\*<sup>†,††</sup>

<sup>†</sup>Center for Basic Research, The Kitasato Institute, 6-15-5 (TCI) Toshima, Kita-ku, Tokyo 114-0003

<sup>††</sup>Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641

(Received March 4, 2005; CL-050296)

 $\delta,\beta'$ -Dihydroxy- $\beta,\gamma$ -unsaturated esters were stereoselectively synthesized by aldol reaction of aldehydes with samarium enolates that were generated by epoxide-fragmentation of  $\gamma,\delta$ oxiranyl- $\alpha,\beta$ -unsaturated esters using two moles of samarium-(II) iodide. This samarium(II) iodide-mediated aldol reaction was applied successfully to the enantioselective synthesis of C11–C17 segment of Mycinolide IV.

Samarium(II) iodide (SmI<sub>2</sub>) is known as a powerful oneelectron reducing agent and is widely used in organic synthesis.<sup>1</sup> Preparation of 3-hydroxy-2-(1-hydroxyalkyl)alkyl ketones (double-aldols) or 3-amino-2-(1-hydroxyalkyl)alkyl ketones ( $\beta$ amino- $\beta'$ -hydroxy ketones) by SmI<sub>2</sub>-mediated aldol reaction of aldehydes with oxiranyl ketones or aziridinyl ketones was recently reported (Scheme 1),<sup>2,3</sup> which were then successfully applied to synthesis of taxane skeleton.<sup>4</sup>





In addition, preparation of  $\delta$ -amino- $\beta'$ -hydroxy- $\beta$ , $\gamma$ -unsaturated esters by SmI<sub>2</sub>-mediated aldol reaction of aldehydes with  $\gamma$ , $\delta$ -aziridinyl- $\alpha$ , $\beta$ -unsaturated esters was reported.<sup>5</sup> Further, this SmI<sub>2</sub>-mediated aldol reaction was successfully applied to the asymmetric one by introducing chiral oxazolidinone to unsaturated aziridine. Next, the use of  $\gamma$ , $\delta$ -oxiranyl- $\alpha$ , $\beta$ -unsaturated aziridine.



Scheme 2.

ed esters instead of  $\gamma$ , $\delta$ -aziridinyl– $\alpha$ , $\beta$ -unsaturated esters was studied and aldol adducts thus formed here were considered to be  $\delta$ , $\beta'$ -dihydroxy– $\beta$ , $\gamma$ -unsaturated esters (Scheme 2). As three functional groups and trans double bond are involved in these compounds, they can be considered new building blocks for the synthesis of natural products or bioactive compounds.

In the first place, SmI<sub>2</sub>-mediated aldol reaction of (2'R,2E)-3-(oxiran-2'-yl)acrylic ethyl ester (1)<sup>6</sup> with several aldehydes was examined (Table 1). Reaction of 1 with benzaldehyde gave the corresponding  $\delta,\beta'$ -dihydroxy- $\beta,\gamma$ -unsaturated ester 1a (32/ 68 mixture of *syn* and *anti* isomers) in moderate yield along with a small amount of  $\delta$ -hydroxy- $\beta,\gamma$ -unsaturated ethyl ester (Entry 1). The yield of 1a slightly decreased because reduction of benzaldehyde simultaneously took place under these conditions. On the other hand, reaction of 1 with aliphatic aldehydes proceeded smoothly to give the corresponding  $\delta,\beta'$ -dihydroxy- $\beta,\gamma$ -unsaturated esters 1b–1f in excellent yields (Entries 2–6). This aldol reaction proceeded to form *E*-olefin selectively with complete  $\alpha$ -regioselectivity but diastereoselectivity (*syn*/ *anti* = 23/77–49/51) was not observed.

**Table 1.** SmI<sub>2</sub>-mediated aldol reaction of  $\gamma$ , $\delta$ -oxiranyl- $\alpha$ , $\beta$ -unsaturated ester **1** and various aldehydes

| O Sml <sub>2</sub> / |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           | H O<br>OEt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | O R´                                                                                                                                                                                                                                                                                                                                                                                               | , +<br>′ОН                                                                                                                                                | ROH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -70                  | sj                                                                                                                                                                                                                                                                                                                                                                                                 | yn                                                                                                                                                        | anti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aldehyde<br>R        | Product                                                                                                                                                                                                                                                                                                                                                                                            | Yield/%                                                                                                                                                   | (syn/anti)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ph                   | 1a                                                                                                                                                                                                                                                                                                                                                                                                 | 65                                                                                                                                                        | (32/68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Et                   | 1b                                                                                                                                                                                                                                                                                                                                                                                                 | 85                                                                                                                                                        | (40/60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $Ph(CH_2)_2$         | 1c                                                                                                                                                                                                                                                                                                                                                                                                 | 86                                                                                                                                                        | (49/51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>i</i> -Pr         | 1d                                                                                                                                                                                                                                                                                                                                                                                                 | 91                                                                                                                                                        | (43/57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| c-Hex                | 1e                                                                                                                                                                                                                                                                                                                                                                                                 | 95                                                                                                                                                        | (37/63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>t</i> -Bu         | 1f                                                                                                                                                                                                                                                                                                                                                                                                 | 89                                                                                                                                                        | (23/77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | $ \begin{array}{r} O \\ O \\ O \\ \hline \\ O \\ \hline \\ O \\ \hline \\ C \\ \hline \\ \hline \\ O \\ \hline \\ \hline \\ R \\ \hline \\ \hline \\ \hline \\ A \\ \hline \\ -78 \\ \hline \\ \hline \\ \hline \\ -78 \\ \hline \\ Ph \\ Et \\ Ph \\ \hline \\ Ph \\ Et \\ Ph \\ CH_2)_2 \\ i - Pr \\ c - Hex \\ t - Bu \end{array} $ | $ \begin{array}{c} OH \\ OEt \\ \hline RCHO \\ -78 \ ^{\circ}C \\ \hline R \\ \hline \\ \hline \\ \hline \\ \hline \\ R \\ \hline \\ \hline \\ \hline \\$ | $ \begin{array}{c c} & \underbrace{Sml_2/THF}_{RCHO} & \bigoplus_{r'OH} &$ |

Then, this aldol reaction was applied to the asymmetric one by introducing a chiral oxazolidinone to the unsaturated epoxide as in the case of unsaturated aziridine. In the first place, the reaction of (2'R,4''R,2E)-4''-benzyl-3''-[3-(oxiran-2'-yl)acryloyl]oxazolidin-2''-one (2) with 3-phenylpropanal was examined (Table 2, Entry 1).<sup>7</sup> This asymmetric aldol reaction proceeded smoothly and afforded the corresponding product 2a in high yield with high *syn* diastereoselectivity (dr = 7.8/1). In addition, the corresponding products were also obtained in good to high yields with high diasteoselectivities when other aldehydes were used (Entries 2–4).

Table 2. SmI<sub>2</sub>-mediated asymmetric aldol reaction

| < <u>0</u> |               | Sml <sub>2</sub> / THF<br>RCHO<br>–78 °C | OH O<br>R ''OH |                 |
|------------|---------------|------------------------------------------|----------------|-----------------|
| Entry      | Aldehyde      | Product                                  | Yield/%        | dr <sup>a</sup> |
|            | K             |                                          |                |                 |
| 1          | $Ph(CH_2)_2$  | 2a                                       | 85             | 7.8/1           |
| 2          | Et            | 2b                                       | 89             | 9.3/1           |
| 3          | <i>i</i> -Pr  | 2c                                       | 72             | 8.1/1           |
| 4          | <i>c</i> -Hex | 2d                                       | 68             | 7.9/1           |

<sup>a</sup>Diasteromeric ratio



## Scheme 3.

As the asymmetric  $\text{SmI}_2$ -mediated aldol reaction was thus established, this aldol reaction was applied to the synthesis of natural products to show its utility. Then, synthesis of C11– C17 segment of Mycinolide IV (**3**) was tried. Mycinolide IV, isolated from *Micromonospora griseorubida* sp. nov., is the 16-membered macrolide antibiotic and the aglycon of mycinamicin IV. As C11–C17 segment (**3**) has two chiral centers and trans double bond, the above mentioned aldol reaction would be effectively employed in the construction of this compound (Scheme 3).

First, 2,4-pentadienoic acid ethyl ester (4) was treated with *m*-CPBA and  $\gamma$ , $\delta$ -oxiranyl- $\alpha$ , $\beta$ -unsaturated ester was obtained (Scheme 4). Then, it was converted to  $\gamma, \delta$ -oxiranyl- $\alpha, \beta$ -unsaturated imide as a mixture of two diastereomers by hydrolysis and successive introduction of chiral oxazolidinone that followed. Next, asymmetric SmI2-mediated aldol reaction was attempted. Treatment of **2** and propanal with 2 equiv. of  $SmI_2$  at  $-78 \degree C$ cleanly afforded the aldol adduct 2b in high yield (85%) with high diastereoselectivity (dr = 8.7/1). Concerning the reactivity and stereoselectivity, the results were the same either when a mixture of diastereomers or a single isomer was used. Undesired isomers were separated easily by column chromatography. The primary hydroxy group of 2b was selectively protected with 2-(trimethylsilyl)ethoxymethyl (SEM) group followed by reduction with LiBH<sub>4</sub> afforded C11-C17 segment of Mycinolide IV (3). This compound had already been obtained by an entirely different procedure in the total synthesis of Mycinolide IV.<sup>8</sup> Successful use of the aldol adduct 2b in the enantioselective synthesis of C11-C17 segment of Mycinolide IV also confirmed stereochemical assignment of this compound.

It is noted that the stereoselective synthesis of  $\delta,\beta'$ -dihydroxy- $\beta,\gamma$ -unsaturated esters from  $\gamma,\delta$ -oxiranyl- $\alpha,\beta$ -unsaturated esters and aldehydes was developed via the samarium enolates by using two moles of SmI<sub>2</sub>. In addition, this aldol reaction



Scheme 4. Reagents and conditions: a) *m*CPBA, ClCH<sub>2</sub>CH<sub>2</sub>Cl, 60 °C (60%); LiOH, dioxane-MeOH-H<sub>2</sub>O, 0 °C; PivCl, Et<sub>3</sub>N, (4*R*)-4-benzyl-2-oxazolidinone, LiCl, 0 °C (52% in 2 steps). b) SmI<sub>2</sub>, EtCHO, THF, -78 °C (85%, dr = 8.7:1). c) SEMCl, <sup>1</sup>Pr<sub>2</sub>NEt, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C (85%); LiBH<sub>4</sub>, THF–EtOH, 0 °C (87%).

was successfully applied to the enantioselective synthesis of C11–C17 segment of Mycinolide IV. Further investigation of this reaction is now in progress.

The present work was partially supported by Grant of the 21st Century COE Program from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

## References

- a) G. A. Molander, *Chem. Rev.*, **92**, 29 (1992). b) G. A. Molander and C. R. Harris, *Chem. Rev.*, **96**, 307 (1996).
   c) G. A. Molander and C. R. Harris, *Tetrahedron*, **54**, 3321 (1998).
- a) T. Mukaiyama, H. Arai, and I. Shiina, *Chem. Lett.*, **2000**, 580. b) T. Mukaiyama, K. Pudhom, K. Yamane, and H. Arai, *Bull. Chem. Soc. Jpn.*, **76**, 413 (2003).
- 3 T. Mukaiyama, Y. Ogawa, and K. Kuroda, *Chem. Lett.*, **33**, 1472 (2004).
- 4 a) K. Pudhom, H. Arai, K. Yamane, and T. Mukaiyama, *Chem. Lett.*, **2002**, 87. b) J. Matsuo, Y. Ogawa, K. Pudhom, and T. Mukaiyama, *Chem. Lett.*, **33**, 124 (2004). c) Y. Ogawa, K. Kuroda, J. Matsuo, and T. Mukaiyama, *Bull. Chem. Soc. Jpn.*, in press.
- 5 Y. Ogawa, K. Kuroda, and T. Mukaiyama, *Chem. Lett.*, **34**, 372 (2005).
- 6 M. Miyazawa, N. Ishibashi, S. Onhuma, and M. Miyashita, *Tetrahedron Lett.*, 38, 3419 (1997).
- 7 Typical experimental procedure is as follows (Table 2, Entry 1): to a mixture of 2 (36.3 mg, 0.133 mmol) and 3-phenylpropanal (26.7 mg, 0.200 mmol) in THF (4 mL) at -78 °C under an argon atmosphere was added a solution of SmI<sub>2</sub> in THF (0.1 M, 3.30 mL, 0.330 mmol). After the reaction mixture was stirred for 30 min at -78 °C, the reaction mixture was quenched with saturated aq ammonium chloride and was diluted with ethyl acetate. It was extracted with ethyl acetate, and the organic layer was washed with brine and dried over anhydrous sodium sulfate. The crude product was obtained after evaporation of the solvent under reduced pressure and purification by thin-layer chromatography afforded *syn-*2a (41.2 mg, 76%) and other isomer (5.3 mg, 9.7%).
- 8 a) K. Suzuki, T. Matsumoto, T. Tomooka, K. Matsumoto, and G. Tsuchihashi, *Chem. Lett.*, **1987**, 113. b) S. Takano, Y. Sekiguchi, and K. Ogawasawara, *Heterocycles*, **33**, 743 (1992).